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DOE currently sponsors several major power 
generation initiatives that require HT materials 

• Power Generation Initiatives
– Vision 21
– Clean Coal Technologies
– FutureGen

• Successes of these initiatives rely greatly on 
processing and development of materials with 
improved high temperature capabilities



Temperature targets of next-generation 
structural materials imposed by DOE/ARM 

Programs

• Ferritic steels (Fe-base): up to 750°C (~1400°F)

• Austenitic steels [(Fe,Ni) base): up to 850°C 
(1560°F)

• Multiphase alloy systems: >850°C
– ODS alloys
– High temperature intermetallic alloys



Conventional, wrought alloys are 
marginal for next-generation applications

Starr & Tariq, 2002
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Material development

• The temperature requirements imposed by 
DOE/ARM programs are at the limits of the 
strength capabilities of current structural alloys

• It would be prudent from the outset to examine 
the possibilities for developing new materials 
with higher-temperature capabilities

• This paper summarizes the strategies used for 
strengthening metallic and intermetallic alloys at 
high temperatures



Strategies used for strengthening 
metallic and intermetallic alloys at 

elevated temperatures

• Solid solution hardening: large atomic size 
difference between solute and host atoms

• Particle strengthening : Dense precipitation of 
fine and stable particles

• Slow kinetic processes: high melting point, low 
vacancy concentration, low solubility limit

• Coarse grain structures



Strengthening of ferritic and austenitic 
steels

• Solid solution hardening: Mo, W
• Particle strengthening 

– Carbide particles: complex MC carbides 
containing Nb, Ti & V elements

– Intermetallic particles:
AB2 phases (C14, C15 & C36) in ferritic steels
AB3 phases (δ, γ’ & γ’’) in austenitic steels

• Slow diffusion processes: slow precipitation 
and coarsening kinetics



Many commercial alloys are based on the  
Cr-Ni-Fe alloy system
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Newly published phase diagram of the Ni-
Fe-Nb system at  1200°C (2190°F)
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Isothermal section of Ni-rich Ni-Fe-NB 
system at 1200°C (2190°F)
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Intermetallic phases in equilibrium with γ in 
Ni-Nb-Fe-20Cr system
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Two transition peritectiod reactions below are responsible for 
the phase equilibria change:

(1) γ+µ  Cr2Nb+Fe2Nb (2) γ+ Cr2Nb  Ni3Nb+Fe2Nb

(1472°F)



δ Ni3Nb C14 Fe2Nb

C14 Fe2Nb δ lamellar

The Ni content strongly affects the morphology & alloy 
phase in the Fe-20Cr-Ni-Nb system at 800°C (1472°F)



The Ni content strongly affects the microstructure & 
phases in Fe-20Cr-Ni-2Nb at 800°C (1470°F)

35Ni

Ni3Nb-δ Fe2Nb-ε (C14)

Base Alloy (40Ni 2Nb)



The Ni content affects the hardness of 
Laves phase
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•The hardness decrease is due to the lowering of the amount of C14 
precipitates in γ phase



Intermetallic-phase hardening: Summary

• Three stable two-phase fields exist in the Fe-Ni-Nb and 
Fe-Ni-Cr-Nb alloy systems

γ-Ni3Nb           γ- Fe2Nb              α- Fe2Nb

• The Ni content strongly affects the amount and 
morphology of intermetallic-phase precipitates 

• Microstructural features greatly affect the hardening 
behavior of the two-phase alloys

• It is possible to develop new ferritic and austenitic with 
improved high temperature capabilities by 
precipitation of intermetallic phases



A sketch to show the strategies for 
strengthening ferritic and austenitic alloys

Solid solution +  Carbides + Intermetallic-phase



Innovative Approach:
Strengthening of ferritic steels by

nanoclusters at elevated temperatures

• Recent studies at ORNL show that nanoclusters 
(2-5 nm) are formed in Fe-12Cr-3W-0.4Ti-
0.25Y2O3 alloy (12YWT) processed by mechanical 
alloying (MA)

• Surprisingly, these nanoclusters are stable even at 
1300°C (2370°F)(=0.87 Tm)

• These clusters effectively strengthen the alloys at 
room and elevated temperatures

• Creep tests show that the clusters reduce the creep 
rates at 650-900°C by six orders of magnitude



These nanoclusters are extremely stable at 
high temperatures

• Atom probe analyses indicate that the nanoclusters are 
enriched with O, Ti and Y in 12YWT alloy (Fe-12Cr-3W-
0.4Ti-0.25Y2O 3)

O = 24%, Ti = 20%, Y = 9% (at. %)

• Cluster density: 1024/m3

• No appreciable coarsening after creep testing for 14,000 h 
at 800°C or annealing for 10 h/1300°C



The nanoclusters dramatically improve the 
creep resistance of the MA ferritic alloy

• Comparison of the creep rupture properties of 12YWT 
ferritic alloy with other commercial ferritic alloys

12YWT



Future studies of nanoclusters in 
ferritic steels

• Atomic arrangement

• Interfacial structure

• Formation mechanism

• Unusual thermal stability

• Innovative processing 
(other than mechanical alloying) 



Multiphase Intermetallic Alloys 
for High Temperature Use:
Titanium aluminide alloys



In situ lamellar structures can be readily 
produced in titanium aluminide alloys

• Microstructure Control Using α to γ Phase Transformation
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Titanium aluminide alloys with fine lamellar 
structures show excellent mechanical properties

• Both yield strength and tensile elongation can be controlled by 
adjusting lemellar spacing and grain size via heat treatment



Cast turbocharger rotor made from a 
Titanium aluminide alloy in Japan

Ti-46Al-7Nb-1Cr



Manufacturing processes for wrought TiAl alloy 
turbine blade

• Tesui and Takeyama et al., Scripta Materialia 47 (2002) 399

LP Turbine Blade


